PEGylation of nanoparticles improves their cytoplasmic transport

نویسندگان

  • Junghae Suh
  • Kok-Leong Choy
  • Samuel K Lai
  • Jung Soo Suk
  • Benjamin C Tang
  • Sudhir Prabhu
  • Justin Hanes
چکیده

The efficacy of nucleus-targeted drug- or gene-carrying nanoparticles may be limited by slow transport through the molecularly crowded cytoplasm following endosome escape. Cytoskeletal elements and cellular organelles may pose steric and/or adhesive obstacles to the efficient intracellular transport of nanoparticles. To potentially reduce adhesive interactions of colloids with intracellular components, the surface of model nanoparticles was coated with polyethylene glycol (PEG). Subsequently, multiple-particle tracking (MPT) was used to quantify the cytoplasmic transport rates of particles microinjected into the cytoplasm of live cells. PEGylation increased average nanoparticle diffusivities by 100% compared to unPEGylated particles (time scale of 10 s) in live cells. Faster particle transport correlated with a marked decrease in the number of particles that underwent hindered transport, from 79.2% (unmodified) to 48.8% (PEGylated). This result adds to an impressive list of positive benefits associated with PEGylation of drug and gene delivery vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helodermin-loaded nanoparticles: characterization and transport across an in vitro model of the follicle-associated epithelium.

M cells represent a potential portal for oral delivery of peptides and proteins due to their high endocytosis abilities. An in vitro model of human FAE (co-cultures) was used to evaluate the influence of M cells on the transport of free and encapsulated helodermin--a model peptide--across the intestinal epithelium. M cells enhanced transport of intact helodermin (18-fold, Papp=3 x 10(-6) cm s(-...

متن کامل

Elucidating the Mechanism of Silica Nanoparticle PEGylation Processes Using Fluorescence Correlation Spectroscopies

Surface modification with polyethylene glycol (PEG; PEGylation) is a widely used technique to improve nanoparticle (NP) stability, biocompatibility, and biodistribution profiles. In particular, PEGylation of silica surfaces and coatings plays a pivotal role across various classes of NPs. Despite the use of numerous protocols there is limited fundamental understanding of the mechanisms of these ...

متن کامل

Nanoparticle PEGylation for imaging and therapy.

Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and...

متن کامل

Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs.

The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robus...

متن کامل

Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications

Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their function relies on water/proton-exchange between the pores and bulk water. Here we present a compre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Nanomedicine

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007